Cargo dynamic stability in the container loading problem - a physics simulation tool approach Online publication date: Sun, 12-Mar-2017
by António Galrão Ramos; João Jacob; Jorge Fonseca Justo; José Fernando Oliveira; Rui Rodrigues; A. Miguel Gomes
International Journal of Simulation and Process Modelling (IJSPM), Vol. 12, No. 1, 2017
Abstract: The container loading problem (CLP) is a real-world driven, combinatorial optimisation problem that addresses the maximisation of space usage in cargo transport units. The research conducted on this problem failed to fulfill the real needs of the transportation industry, owing to the inadequate representation of practical-relevant constraints. The dynamic stability of cargo is one of the most important practical constraints. It has been addressed in the literature in an over-simplified way which does not translate to real-world stability. This paper proposes a physics simulation tool based on a physics engine, which can be used to translate real-world stability into the CLP. To validate the tool, a set of benchmark tests is proposed and the results obtained with the physics simulation tool are compared to the state-of-the-art simulation engineering software Abaqus Unified FEA. Analytical calculations have been also conducted, and it was also possible to conclude that the tool proposed is a valid alternative.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Simulation and Process Modelling (IJSPM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com