Statistical validation of simulation models
by Ramesh Rebba, Shuping Huang, Yongming Liu, Sankaran Mahadevan
International Journal of Materials and Product Technology (IJMPT), Vol. 25, No. 1/2/3, 2006

Abstract: This paper investigates various statistical methodologies for validating simulation models in automotive design. Validation metrics to compare model prediction with experimental observation, when there is uncertainty in both, are developed. Two types of metrics based on Bayesian analysis and principal components analysis are proposed. The validation results are also compared with those obtained from classical hypothesis testing. A fatigue life prediction model for composite materials and a residual stress prediction model for a spot-welded joint are validated, using the proposed methodology.

Online publication date: Mon, 28-Nov-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com