Graph-based semi-supervised classification on very high resolution remote sensing images Online publication date: Tue, 21-Mar-2017
by Yupeng Yan; Manu Sethi; Anand Rangarajan; Ranga Raju Vatsavai; Sanjay Ranka
International Journal of Big Data Intelligence (IJBDI), Vol. 4, No. 2, 2017
Abstract: Classification of very high resolution (VHR) remote sensing imagery is a rapidly emerging discipline but faces several challenges owing to the huge scale of the pixel data involved, indiscernibility in the traditionally used features to represent various regions, and the lack of available ground truth data. This paper provides a framework which elegantly overcomes these hurdles by providing a novel semi-supervised learning approach which employs multiscale superpixel tessellation representations of VHR imagery. Superpixels are homogeneous and irregularly shaped regions which form the backbone of our approach and are used to derive novel features by learning a decision tree. Our semi-supervised learning approach works on a superpixel graph and seamlessly combines the large margin capability of a support vector machine (SVM) with a graph-based Laplacian label propagation approach to obtain a novel objective function. Further we also provide a self-contained and easily parallelisable linear iterative optimisation approach based on the principle of majorisation-minimisation. We evaluate this approach on four different geographic settings with varying neighbourhood types and draw comparisons with the popular and widely used Gaussian multiple instance learning algorithm. Our results showcase several advantages in accuracy and efficiency, which coupled with the ease of model building and inherently parallelisable optimisation make our framework a great choice for deployment in large scale applications like global human settlement mapping and population distribution, and change detection.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com