Local clustering coefficient-based assortativity analysis of real-world network graphs
by Natarajan Meghanathan
International Journal of Network Science (IJNS), Vol. 1, No. 3, 2017

Abstract: Assortative index (A. Index) of a network graph is a measure of the similarity of the end vertices of the edges with respect to a node-level metric. Networks were classified as assortative, dissortative or neutral depending on the proximity of the A. index values to 1, -1 or 0 respectively. Degree centrality (DegC) has been traditionally the node-level metric used for assortativity analysis in the literature. In this paper, we propose to analyse assortativity of real-world networks using the local clustering coefficient (LCC) metric: a measure of the probability with which any two neighbours of a vertex are connected. Though DegC and LCC are inversely related, we observe 80% of the 50 real-world network graphs analysed to exhibit similar levels of assortativity. We also observe a real-world network graph to be neutral (i.e., assortative or dissortative) with a probability of 0.6 or above with respect to both DegC and LCC.

Online publication date: Tue, 11-Apr-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Network Science (IJNS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com