SCHISM: a new approach to interesting subspace mining Online publication date: Thu, 08-Dec-2005
by Karlton Sequeira, Mohammed Zaki
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 1, No. 2, 2005
Abstract: High dimensional data pose challenges to traditional clustering algorithms due to their inherent sparseness and data tend to cluster in different and possibly overlapping subspaces of the entire feature space. Finding such subspaces is called subspace mining. We present SCHISM, a new algorithm for mining interesting subspaces, using the notions of support and Chernoff-Hoeffding bounds. We use a vertical representation of the dataset, and use a depth first search with backtracking to find maximal interesting subspaces. We test our algorithm on a number of high dimensional synthetic and real datasets to test its effectiveness.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com