Research and development of spectral clustering algorithms
by Ling Ding
International Journal of Collaborative Intelligence (IJCI), Vol. 1, No. 4, 2016

Abstract: Spectral clustering is a very competitive clustering method. It attracts more and more attention of academia in recent years and becomes a new hotspot in machine learning since it does not make any assumptions on the global structure of data and has excellent performance for the sample space of arbitrary shape. The idea of spectral clustering is based on spectral graph theory. It treats data clustering problem as a graph partitioning problem and we can get the best clustering results by constructing a suitable graph, and using the appropriate graph cut method. Spectral clustering is better than traditional clustering algorithms in many aspects and has been successfully applied in areas such as data analysis, speech and image processing. This paper first introduces the basic concepts of graph theory and traditional graph cut methods; then analyses typical spectral clustering algorithms and reviews the latest development of spectral clustering; finally, proposes several valuable research directions in light of the deficiencies of spectral clustering algorithms.

Online publication date: Fri, 12-May-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Collaborative Intelligence (IJCI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com