A call for exploratory data analysis in revenue management forecasting: a case study of a small and independent hotel in The Netherlands Online publication date: Sun, 14-May-2017
by Dirk Sierag; Jean-Pierre Van Der Rest; Ger Koole; Rob Van Der Mei; Bert Zwart
International Journal of Revenue Management (IJRM), Vol. 10, No. 1, 2017
Abstract: Using five years of data collected from a small and independent hotel this case study explores RMS data as a means to seek new insights into occupancy forecasting. The study provides empirical evidence on the random nature of group cancellations, an important but neglected aspect in hotel revenue management modelling. The empirical study also shows that in a local market context demand differs significantly per point of time during the day, in addition to seasonal monthly and weekly demand patterns. Moreover, the study presents evidence on the nonhomogeneous Poisson nature of the probability distribution that demand follows, a crucial characteristic for forecasting modelling that is generally assumed but not reported in the hotel forecasting literature. This implies that demand is more uncertain for smaller than for larger hotels. The paper concludes by drawing attention to the critical and often overlooked role of exploratory data analysis in hotel revenue management forecasting.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Revenue Management (IJRM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com