An improved particle swarm-ant colony hybrid algorithm for HMM training
by Rong Li; Qing-Shan Zhao
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 12, No. 2, 2017

Abstract: The traditional parameter estimation methods of Hidden Markov Models (HMM) are easy to fall into local optimum, have higher requirements for initial parameter values and might result in over-coupling phenomena. In order to improve the robustness and identification performance of the model, a novel HMM parameter training method based on an improved particle swarm-ant colony algorithm (IPSAA) is presented. First, extremum disturbance is added into particle swarm optimisation algorithm (PSO) and parameters of ant colony algorithm (ACA) such as stimulating factor, volatilisation coefficients and pheromone are all improved adaptively. Second, the fitness function values of particles' history optimal solutions after PSO coarse search are used to adjust the initial pheromone distribution in fine search of ACA. Finally, Baum-Welch algorithm (B-W) is adopted to locally modify the approximate global optimal solution. The new algorithm not only solves the BW dependency on initial values and the trapped local optimum problem, but also makes full use of the global search ability of IPSAA and local development ability of B-W. The experimental results show that the system using the new algorithm is more efficient, more stable, and has better classification performance than that of traditional HMM training algorithm.

Online publication date: Tue, 16-May-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com