Privacy-preserving item-based recommendations over partitioned data with overlaps Online publication date: Wed, 07-Jun-2017
by Ibrahim Yakut; Jaideep Vaidya
International Journal of Business Information Systems (IJBIS), Vol. 25, No. 3, 2017
Abstract: User ratings are vital elements to drive recommender systems and, in the case of an insufficient amount of ratings, companies may prefer to operate recommender services over partitioned data. To make this feasible, there are privacy-preserving schemes. However, such solutions currently have not comprehensively investigated probable rating overlaps among partitioned data. Such overlaps make collaboration over partitioned data more challenging, especially if overlapped values are divergent. In this study, we examine this privacy-preserving recommender problem and propose novel schemes in this sense. By means of our schemes, two parties can perform item-based collaborative filtering over partitioned data with divergent overlaps. We also show that the proposed solutions promote prediction quality with tolerable overheads.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Information Systems (IJBIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com