Static wetting characteristics of micro-textured stainless steel surfaces under uniaxial loading condition Online publication date: Tue, 20-Jun-2017
by A. Vivek Anand; V. Arumugam; R. Kannan
International Journal of Surface Science and Engineering (IJSURFSE), Vol. 11, No. 2, 2017
Abstract: The wetting behaviour associated with the surface micro asperities is investigated on the groove and pillar textured SS304 solid surface which is widely used in the flight vehicles where the stresses are induced by uniaxial compressive loads for both positive and negative curvature. By varying the applied load on the groove-textured surfaces in the direction perpendicular to grooves, the positive curvature shows a decrease in static contact angle initially then increases for further increase in deflection; however, the negative curvature induced by the same applied load shows an opposite trend. At the same time, in the pillar-textured surface, the static contact angle decreases with increase in applied load for the positive curvature and the same wetting parameter shows an opposite trend for the negative curvature. This phenomenon is mainly attributed to the pinning behaviour of the three phase contact line of the liquid drop on these two surfaces.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Surface Science and Engineering (IJSURFSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com