On enhancing genetic algorithms using new crossovers
by Ahmad B.A. Hassanat; Esra’a Alkafaween
International Journal of Computer Applications in Technology (IJCAT), Vol. 55, No. 3, 2017

Abstract: This paper investigates the use of more than one crossover operator to enhance the performance of genetic algorithms. Novel crossover operators are proposed such as the collision crossover, which is based on the physical rules of elastic collision, in addition to proposing two selection strategies for the crossover operators, one of which is based on selecting the best crossover operator and the other randomly selects any operator. Several experiments on some travelling salesman problems have been conducted to evaluate the proposed methods, which are compared to the well-known modified crossover operator and partially mapped crossover. The results show the importance of some of the proposed methods, such as the collision crossover, in addition to the significant enhancement of the genetic algorithms performance, particularly when using more than one crossover operator.

Online publication date: Mon, 26-Jun-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com