Electricity consumption scenario prediction based on factor analysis and least squares support vector machine optimised by fruit fly algorithm Online publication date: Mon, 10-Jul-2017
by Siwei Wei; Ting Wang
International Journal of Applied Decision Sciences (IJADS), Vol. 10, No. 3, 2017
Abstract: Electricity consumption forecasting is the basis and premise of power grid planning through the analysis of historical electricity consumption data and related factors. For future electricity consumption accurate prediction and influencing factors analysis, we use both scenario analysis and econometric methods comprehensively. Firstly, this paper analyses the effects of GDP, population, energy consumption and many other factors of electricity consumption in depth and then extracts the key influencing factors of electricity consumption. Secondly, electricity consumption scenario prediction model is established based on factor analysis and least squares support vector machine optimised by fruit fly algorithm. Thirdly, the performance of proposed model is tested through the comparison of different models and we get the forecast results for further analysis. The proposed model is proven to have good prediction accuracy and we provide more than one research perspective about future development of electricity consumption for decision-makers by scenario analysis.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Decision Sciences (IJADS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com