MiRFFS: a functional group-based feature selection method for the identification of microRNA biomarkers
by Yang Yang; Yiqun Xiao; Tianyu Cao; Wei Kong
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 18, No. 1, 2017

Abstract: The identification of microRNA biomarkers has been a central task in disease diagnosis, prognosis assessment and drug design. Both statistical methods and machine learning approaches have been applied to the identification of biomarkers. Especially, feature selection and regularisation techniques are efficient for filtering informative attributes from a high-dimensional space. In order to enhance their performance, the intrinsic data structure is usually exploited. In this study, we utilise the GO-based semantic similarity to infer miRNA functional groups, and propose a new feature selection method, called MiRFFS (MiRNA Functional group-based Feature Selection). We also incorporate the functional group information to the sparse group Lasso (SGL), and compare MiRFFS with SGL as well as the state-of-the-art feature selection methods. Experimental results on five miRNA microarray profiles of breast cancer show that MiRFFS can achieve a compact feature subset with substantial improvement on the accuracy compared with other feature selection and lasso methods.

Online publication date: Thu, 24-Aug-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com