An improved HBA metaheuristic
by Fatima Bekaddour; Mohammed Amine Chikh
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 9, No. 1, 2017

Abstract: As simple and effective optimisation approach, homogeneity-based algorithm (HBA) is one of the recent metaheuristics, proposed to minimise the total misclassification cost of data mining approaches. However, one problem is that HBA does not adopt computational complexity of the used data mining technique. This is due to the way objective function is defined. So, in this paper, we have proposed an improved HBA (IHBA), which is utilising a modified objective function that compute the computational complexity of the used classification method. We also test several clustering techniques as HBA parameters tuning, in order to enhance classifiers' performance. We have tested IHBA on different benchmarks and the obtained results show the effectiveness of the proposed method.

Online publication date: Sun, 27-Aug-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com