A pilot study on cold-formed steel framed shear wall assemblies with corrugated sheathing Online publication date: Sun, 10-Sep-2017
by Cheng Yu; Hitesh Vora
International Journal of Structural Engineering (IJSTRUCTE), Vol. 8, No. 3, 2017
Abstract: Flat steel sheet is the common steel sheathing for cold-formed steel (CFS) framed shear walls. Compared to wood sheathing, the practical sheet steel sheathing gives lower shear strength and it tends to fail in the shear buckling which results in large out of plane deformation. On the other hand, sheet steel sheathing is non-combustible material which has great applications in mid-rise residential or commercial buildings. In order to develop a high strength CFS shear wall assemblies with steel sheathing, a pilot research was conducted at University of North Texas to experimentally investigate the behaviour and shear strength of CFS framed wall assemblies with 0.027 in. (22 gauge) corrugated sheet steel sheathing. The parameters considered in the test program included the framing member thickness, the fastener size and spacing, and the boundary stud configurations. Both monotonic and cyclic tests were conducted. The test results indicated that with appropriate framing members and the fastener configurations, the corrugated steel sheet can provide much higher shear strength than the flat steel sheet having the same thickness. This paper presents the test details, test results, and the analysis on the ductility of the shear wall system under monotonic and cyclic loading.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Structural Engineering (IJSTRUCTE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com