A combined genetic algorithm and simulated annealing approach for solving competitive hub location and pricing problem
by Mehdi Abbasi; Raziyeh Niknam
International Journal of Applied Management Science (IJAMS), Vol. 9, No. 3, 2017

Abstract: The competitive hub location and pricing problem (CHLPP) describes a situation in which the incumbent firm has already established an optimal hub network with existing hubs for cost minimisation to satisfy all demands. The entrant designs a network to maximise its profit and applies optimal pricing, considering that the existing firm applies mill pricing. Customer's choice factor is solely price modelled using logit function. According to the literature, CHLPP is a NP-hard problem and genetic algorithm (GA) has been previously applied for solving it. In this paper, we propose a more efficient algorithm through combining GA and simulated annealing (SA) algorithm (GA-SA) to solve the mentioned problem. We test the algorithm on the Australia post (AP) data set. Comparing GA-SA and GA computational results indicates that the hybrid GA-SA method outperforms the GA approach in terms of both solution quality (on average 10%) and run time (on average 9%).

Online publication date: Fri, 15-Sep-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Management Science (IJAMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com