Is the Bee Colony Optimisation algorithm suitable for continuous numerical optimisation?
by Miloš Simić
International Journal of Metaheuristics (IJMHEUR), Vol. 6, No. 4, 2017

Abstract: Bee colony optimisation (BCO) is a nature-inspired swarm metaheuristic for solving hard optimisation problems. It has successfully been applied to various areas of science, industry, and engineering. However, all those cases belong to the field of combinatorial optimisation. This paper is among the first to test BCO's capacities for solving continuous numerical optimisation problems. We found that the performance of the algorithm depended on the settings of its parameters and characteristics of the optimisation problems to which it was applied. We examined for which types of numerical functions our implementation of improvement-based BCO, known as BCOi, performed well and which classes it was not able to handle successfully. Also, following the design of experiments (DoE) approach, we analysed how the parameters of the algorithm affected its performance and provided some useful explanations that might hold for other applications of our version and other variants of BCO.

Online publication date: Tue, 03-Oct-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Metaheuristics (IJMHEUR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com