A novel approach to knowledge discovery and representation in biological databases
by Jing Lu; Cuiqing Wang; Malcolm Keech
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 13, No. 4, 2017

Abstract: Extraction of motifs from biological sequences is among the frontier research issues in bioinformatics, with sequential patterns mining becoming one of the most important computational techniques in this area. A number of applications motivate the search for more structured patterns and concurrent protein motif mining is considered here. This paper builds on the concept of structural relation patterns and applies the concurrent sequential patterns (ConSP) mining approach to biological databases. Specifically, an original method is presented using support vectors as the data structure for the extraction of novel patterns in protein sequences. Data modelling is pursued to represent the more interesting concurrent patterns visually. Experiments with real-world protein datasets from the UniProt and NCBI databases highlight the applicability of the ConSP methodology in protein data mining and modelling. The results show the potential for knowledge discovery in the field of protein structure identification. A pilot experiment extends the methodology to DNA sequences to indicate a future direction.

Online publication date: Sat, 14-Oct-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com