Resilient industrial control systems based on multiple redundancy Online publication date: Thu, 30-Nov-2017
by Cristina Alcaraz
International Journal of Critical Infrastructures (IJCIS), Vol. 13, No. 2/3, 2017
Abstract: The incessant search for cost-effective recovery solutions for structural controllability has led to one of the most challenging research areas within the field of critical infrastructure protection. The resilience of large distributions, like industrial control scenarios, is proving to be a complicated mission due to the inherent non-locality problems of structural controllability and its susceptibility to advanced threats. To address these issues, this paper proposes a new repair approach based on multiple redundant pathways and the lessons learnt from the work presented in Alcaraz and Lopez (2016). From Alcaraz and Lopez (2016), we have adapted the local measures to combine them with each of the five strategies of remote reconnection described in this paper. To validate the sustainability of the combined approaches, two practical case studies are presented here showing that a local dependence on a brother driver node together with remote dependence is enough to reach optimal states.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Critical Infrastructures (IJCIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com