A big data-based RF localisation method for unmanned search and rescue Online publication date: Fri, 01-Dec-2017
by Ju Wang; Hongzhe Liu; Hong Bao; Cesar Flores Montoya; James Hinton
International Journal of Big Data Intelligence (IJBDI), Vol. 5, No. 1/2, 2018
Abstract: Autonomous mobile robots require efficient big-data methods to process a large amount of real-time sensory data to perform a task. We investigate a novel RF sensing-based method for target localisation where a large set of sensor data are mined to produce meaningful location information of a target device. The estimated location of the target is further used by the navigation algorithm to execute a movement plan. Using the networked RF beacon data, the proposed big data approach alleviates the problem of noisy RF measurements in location estimation. A particle filter algorithm is used to track the location of target node. The algorithm demonstrates a beyond-the-grid accuracy even only a coarse RF map is used.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com