Document stream classification based on transfer learning using latent topics
by Masato Shirai; Jianquan Liu; Takao Miura; Yi-Cheng Chen
International Journal of Big Data Intelligence (IJBDI), Vol. 5, No. 1/2, 2018

Abstract: In this investigation, we propose a classification framework based on transfer learning using latent intermediate domain for document stream classification. In document stream, word frequency changes dramatically because of transition of themes. To classify document stream, we capture new features and modify the classification criteria during the stream. Transfer learning utilises extracted knowledge from source domain to analyse the target domain. We extract latent topics based on topic model from unlabeled documents. Our approach connects each domain using latent topics to classify documents. And we capture change of features by update of intermediate domain in document stream.

Online publication date: Fri, 01-Dec-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com