A high accuracy variant of the iterative alternating decomposition explicit method for solving the heat equation Online publication date: Sun, 12-Feb-2006
by M.S. Sahimi, N.A. Mansor, N.M. Nor, N.M. Nusi, N. Alias
International Journal of Simulation and Process Modelling (IJSPM), Vol. 2, No. 1/2, 2006
Abstract: We consider three level difference replacements of parabolic equations focusing on the heat equation in two space dimensions. Through a judicious splitting of the approximation, the scheme qualifies as an alternating direction implicit (ADI) method. Using the well known fact of the parabolic-elliptic correspondence, we shall derive a two stage iterative procedure employing a fractional splitting strategy applied alternately at each intermediate time step to the one dimensional heat equation. As the basis of derivation is the unconditionally stable (4,2) accurate ADI scheme, this method is convergent, computationally stable and highly accurate.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Simulation and Process Modelling (IJSPM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com