Response surface method-based optimisation of spray parameters during impingement cooling of hot steel in rolling Online publication date: Wed, 28-Mar-2018
by Santosh Kumar Nayak; Purna Chandra Mishra
International Journal of Process Management and Benchmarking (IJPMB), Vol. 8, No. 2, 2018
Abstract: Response surface methodology was employed for optimising the complex air-water spray mechanisms that occur in hot surface cooling processes where forced convection exists. Results from a physical air-water spray cooling experiment were generated and the experimental parameters were optimised for achieving heat flux from the surface of a hot steel test plate of dimension 120 mm × 120 mm. The thickness of the plate was considered as one of the variable (4 mm, 6 mm and 8 mm) during the experimentation. The other variables in the problem were the nozzle to plate distance, air pressure and water pressure. The experiments were carried out based on the response surface design of experiments. The heat flux was calculated by using Newton's convection model. The optimisation of the controlling parameters was carried out by using the response surface method (RSM). A new mathematical correlation was developed for optimisation of the surface heat flux.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Process Management and Benchmarking (IJPMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com