A novel method combining fuzzy SVM and sampling for imbalanced classification
by Tao Ma; Ying Hou; Jian-Jun Cheng; Xiao-Yun Chen
International Journal of Applied Systemic Studies (IJASS), Vol. 8, No. 1, 2018

Abstract: The class imbalance problem has been reported to reduce performance of many existing learning algorithms in intrusion detection. However, the detection rates for minority classes still need to be improved. Thus, the novel hybrid method FSVMs is proposed to solve the problem in the paper, which integrates the prevailing sampling method SMOTE with fuzzy semi-supervised SVM learning approach to class imbalanced intrusion detection data. The basic KDD Cup 1999 dataset, NSLKDD dataset and imbalanced dataset from UCI are used to evaluate the performance of proposed model. Experiment results show that the proposed method outperforms other state-of-the-art classifiers including support vector machine (SVM), back propagation neural network (BPNN), Bayes, k-nearest neighbour (KNN), decision tree (DT), random forest (RF) and four sampling methods in the aspects of detection rate and false alarm rate, and has better robustness for imbalanced classification.

Online publication date: Fri, 18-May-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Systemic Studies (IJASS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com