Numerical analysis of non-isothermal walls driven-gas flow
by Mohamed Hssikou; Jamal Baliti; Mohammed Alaoui
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 10, No. 2, 2018

Abstract: The gas flow driven by non-isothermal walls effect is studied by both macroscopic and kinetic approaches. In this study, the behaviour of a rarefied and Maxwell gas flow induced by the thermal creep and stresses within a two-dimensional microcavity is investigated using the direct simulation Monte Carlo (DSMC) method and the regularised 13-moment equations solution. The upper and bottom walls of the microcavity are linearly heated from the cold and environmental temperature T- to the hot one T+. However, the left and right walls are kept at uniform and different temperatures T- and T+, respectively. The non-isothermal walls effect, at the vicinity of longitudinal walls, on the macroscopic gas properties is clarified for various values of the Knudsen number Kn, rarefaction degree. The agreement between DSMC and R13 results confirms the breakdowns of the classical Navier-Stokes and Fourier (NSF) theory for rarefied gas microflows.

Online publication date: Mon, 21-May-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com