Accuracy assessment of rough set based SVM technique for spatial image classification
by D.N. Vasundhara; M. Seetha
International Journal of Knowledge and Learning (IJKL), Vol. 12, No. 3, 2018

Abstract: There exist many traditional spatial image classification techniques which are developed over past years and exists in literature. Today, expert systems along with machine learning methods are getting universality in this area due to effective classification. This paper presents Rough set based support vector machine (SVM) classification (RS-SVM) method. In this technique, Rough set (RS) is used as a feature selection mathematical tool which eliminates the redundant features. Further, this reduced dimensionality dataset is given to SVM classifier. This process improves the classification accuracy and performance. We have performed experiments using standard geospatial images for above-proposed method for classification.

Online publication date: Thu, 14-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge and Learning (IJKL):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com