Preselection via classification: a case study on global optimisation
by Jinyuan Zhang; Aimin Zhou; Guixu Zhang
International Journal of Bio-Inspired Computation (IJBIC), Vol. 11, No. 4, 2018

Abstract: In evolutionary optimisation, the preselection aims to choose promising solutions from a set of candidates for the fitness evaluation. It is usually based on the approximated fitness values, which are not necessary in many cases because we are usually interested in whether a candidate is promising or not instead of how promising it is. Actually, the preselection can be regarded as a classification process, i.e., to assign each candidate solution a label (+1 if promising or −1 otherwise). To this end, this paper proposes a classification based preselection (CPS) strategy and applies it to evolutionary optimisation. Systematic experiments are conducted to study the performance of CPS and the experimental results suggest that it can significantly improve the performance of some state-of-the-art evolutionary algorithms on most of the given test instances.

Online publication date: Fri, 29-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com