An analysis of the 2016 US presidential election using Chanakya - a knowledge discovery platform for text mining Online publication date: Fri, 29-Jun-2018
by Rashmi Malhotra; Kunal Malhotra
International Journal of Knowledge Engineering and Data Mining (IJKEDM), Vol. 5, No. 1/2, 2018
Abstract: In this era of information overload, discovering knowledge is a challenge. However, a new generation of text mining tools enables researchers and practitioners to analyse large volumes of data. This paper illustrates the design of knowledge discovery system - Chanakya using text mining. Chanakya works in two stages. Stage 1 uses naive Bayes classifier, a supervised machine-learning algorithm to train for classes, as we explicitly provide training data that is labelled with classes. Stage 2 uses k-means analysis, an unsupervised machine-learning algorithm to determine what categories are emerging from the mentions of each class. We use the 2016 presidential elections Twitter feeds to illustrate the use of Chanakya. Chanakya offers a commentary on the current state of the political arena after analysing the candidate tweets and how people are reacting to these tweets.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Data Mining (IJKEDM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com