On the improved mechanical properties of nanoclay reinforced ABS composite for fused deposition modelling Online publication date: Tue, 03-Jul-2018
by Vishal Francis; Prashant K. Jain
International Journal of Materials and Product Technology (IJMPT), Vol. 57, No. 1/2/3, 2018
Abstract: Due to the restrictions imposed by the availability of materials in fused deposition modelling process (FDM), the achieved mechanical properties of FDM parts are limited. This scarceness leads to a critical need for improving the mechanical properties of FDM parts. The incorporation of nanoclay can effectively improve the mechanical properties of polymeric materials used in FDM. The present study investigates the FDM of clay-based polymer nanocomposite and examines the effect of dual extrusion in part fabrication. Incorporation of nanoclay demonstrated significant improvement in tensile, modulus and compressive strength as 14.5%, 21% and 24% respectively. A substantial increase in modulus and compressive behaviour was observed in hybrid parts. The developed material possesses enhanced properties compared to the virgin polymer and can be used effectively as an alternative material for FDM process. Dual extrusion technique can aid to tailor material properties as per the requirements in FDM parts.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com