Parametric electrical impedance tomography for monitoring bone mineral density in the spine using 3D human model Online publication date: Wed, 25-Jul-2018
by Neta Naimark; Shimon Abboud; Marina Arad
International Journal of Medical Engineering and Informatics (IJMEI), Vol. 10, No. 3, 2018
Abstract: Monitoring methods of bone mineral density (BMD), the standard measure for osteoporosis diagnosis, are both costly and complex. Since changes in bone permittivity and conductivity values occur due to changes in BMD, they can be used as a simple and inexpensive tool for monitoring BMD. In this work the parametric electrical impedance tomography (pEIT) method for monitoring BMD in the spine using 3D human model is theoretically evaluated. Numerical solver on the forward problem in 3D is used for computing electric potential measured on body surface. Varied spinal BMD are simulated by varying bone relative permittivity and conductivity values which represent different disease stages. The inverse problem is solved by creating a lookup-table of different BMD values.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Medical Engineering and Informatics (IJMEI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com