Improving scheduling efficiency by probabilistic execution time model in cloud environments Online publication date: Tue, 31-Jul-2018
by Peng Xiao; Dongbo Liu; Kaijian Liang
International Journal of Networking and Virtual Organisations (IJNVO), Vol. 18, No. 4, 2018
Abstract: Recently, cloud computing has become a promising paradigm for various kinds of large-scale applications. Due to the unpredictable characteristics of resource availability and workload intensity, execution latency still drastically impairs the performances of cloud applications. In this paper, we model the execution latency by a probabilistic distribution and propose a general task execution model which can be used in most of scenarios. By using the proposed execution time model, cloud administrators can easily refine their resource management or implement some fine-grained task scheduling policies for cloud applications in various cases. Massive experiments are conducted in a real-world cloud platform, and the results indicate the proposed model can be used in many existing scheduling policies for improving the efficiency of task execution.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Networking and Virtual Organisations (IJNVO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com