Energy-efficient adaptive distributed data collection method for periodic sensor networks Online publication date: Tue, 31-Jul-2018
by Ali Kadhum M. Al-Qurabat; Ali Kadhum Idrees
International Journal of Internet Technology and Secured Transactions (IJITST), Vol. 8, No. 3, 2018
Abstract: This article suggests a method, called energy-efficient adaptive distributed data collection method (EADiDaC), which collects periodically sensor readings and prolong the lifetime of a periodic sensor network (PSN). The lifetime of EADiDaC method is divided into cycles. Each cycle is composed of four stages. First, data collection. Second, dimensionality reduction using adaptive piecewise constant approximation (APCA) technique. Third, frequency reduction using symbolic aggregate approximation (SAX) approach. Fourth, sampling rate adaptation based dynamic time warping (DTW) similarity. EADiDaC allows each sensor to remove the redundant collected data and adapts its sampling rate in accordance with the monitored environment conditions. The simulation experiments on real sensor data by applying OMNeT++ simulator explains the effectiveness of the EADiDaC method in comparison with two other existing methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Internet Technology and Secured Transactions (IJITST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com