A thresholding scheme of eliminating false detections on vehicles in wide-area aerial imagery Online publication date: Mon, 06-Aug-2018
by Xin Gao
International Journal of Signal and Imaging Systems Engineering (IJSISE), Vol. 11, No. 4, 2018
Abstract: Post-processings are usually necessary to reduce false detections on vehicles in wide-area aerial imagery. In order to improve the performance of vehicle detection, we propose a two-stage scheme, which consists of a thresholding method by constructing a pixel-weight based thresholding policy to classify pixels in the greyscale feature map of an automatic detection algorithm followed by morphological filtering. We use two aerial videos for performance evaluation, and compare the automatic detection results with the ground-truth objects. We compute average F-score and percentage of wrong classifications towards six detection algorithms before and after applying the proposed scheme. We measure the variation of overlap ratios from detections to objects, and establish sensitivity analysis to evaluate the performance of proposed scheme by combining it on each of two representative algorithms. Simulation results verify both validity and efficiency of the proposed thresholding scheme, also display the difference of detection performance between datasets and among algorithms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Signal and Imaging Systems Engineering (IJSISE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com