A probabilistic granular tabu search for the distance constrained capacitated vehicle routing problem
by Jose Bernal; John Willmer Escobar; Juan Camilo Paz; Rodrigo Linfati; Gustavo Gatica
International Journal of Industrial and Systems Engineering (IJISE), Vol. 29, No. 4, 2018

Abstract: We address the well-known distance constrained capacitated vehicle routing problem (DCVRP) by considering Euclidean distances, in which the aim is to determine the routes to be performed to fulfil the demand of the customers by using a homogeneous fleet. The objective is to minimise the sum of the variable costs associated with the distance travelled by the performed routes. In this paper, we propose a metaheuristic algorithm based on a probabilistic granular tabu search (pGTS) by considering different neighbourhoods. In particular, the proposed algorithm selects a neighbourhood by using a probabilistic discrete function, which is modified dynamically during the search by favouring the moves that have improved the best solution found so far. A shaking procedure is applied whenever the best solution found so far is not improved for a given number of iterations. Computational experiments on benchmark instances taken from the literature show that the proposed approach is able to obtain high quality solutions, within short computing times.

Online publication date: Sun, 26-Aug-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com