Period steady-state identification for a nonlinear front evolution equation using genetic algorithms
by Hamza Khalfi; Nour Eddine Alaa; Mohammed Guedda
International Journal of Bio-Inspired Computation (IJBIC), Vol. 12, No. 3, 2018

Abstract: In molecular beam epitaxy, it is known that a planar surface may suffer from a morphological instability in favour to different front pattern formations. In this context, many studies turned their focus to the theoretical and numerical analysis of highly nonlinear partial differential equations which exhibit different scenarios ranging from spatio-temporal chaos to coarsening processes (i.e., an emerging pattern whose typical length scale with time). In this work our attention is addressed toward the study of a highly nonlinear front evolution equation proposed by Csahók et al. (1999) where the unknowns are the periodic steady states which play a major role in investigating the coarsening dynamics. Therefore the classical methods of Newton or a fixed point type are not suitable in this situation. To overcome this problem, we develop in this paper a new approach based on heuristic methods such as genetic algorithms in order to compute the unknowns.

Online publication date: Mon, 10-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com