Integration of k-means clustering algorithm with network analysis for drug-target interactions network prediction Online publication date: Sat, 15-Sep-2018
by Sara Aghakhani; Ala Qabaja; Reda Alhajj
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 20, No. 3, 2018
Abstract: Prediction of the interactions between drugs and target proteins is an important factor in silico drug discovery. The number of known interactions is very small in comparison to the potential number of interactions. In this paper, a new method is proposed which combines data from both chemical structures and genomic sequence data. This method uses both supervised and unsupervised learning, as well as network analysis techniques. The proposed approach integrates k-means clustering algorithm with Social Network Analysis (SNA) techniques for a novel prediction of drug-target interactions. Here, we demonstrate the performance of our approach in the prediction of drug-target interactions by using four classes of drug-target interaction networks in human; enzymes, ion channels, G protein-coupled receptors (GPCRs), and nuclear receptors. The AUC curve is used to evaluate the accuracy of the proposed approach using three classifiers; Bayes Network, Naïve Bayes and SVM. We could identify novel drug-protein interactions using the Bayes network classifier. The reported accuracy for enzymes, ion channels, GPCRs, and nuclear receptors are 98%, 85%, 98.6% and 99.2%.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com