Online fault diagnosis in partially observed Petri nets
by Jiufu Liu; Zaihong Zhou; Zhisheng Wang
International Journal of Industrial and Systems Engineering (IJISE), Vol. 30, No. 2, 2018

Abstract: This paper investigates the fault detection problem for discrete event systems (DES) which can be modelled by partially observed Petri nets (POPN). To overcome the problem of low diagnosability in the POPN online fault diagnoser in current use, we propose an improved online fault diagnosis algorithm that integrates generalised mutual exclusion constraints (GMEC) and integer linear programming (ILP). We assume that the POPN structure and its initial markings are known, and the faults are modelled as unobservable transitions. First, the event sequence is observed and recorded. Then, the ILP problem of POPN is solved for elementary diagnosis of the system behaviour. While this system diagnoses that some faults may have happened, we also use GMEC for further diagnosis. Finally, we modelled and analysed an example of a real DES to test the new fault diagnoser. The proposed algorithm increased the diagnosability of the DES remarkably, and the effectiveness of the new algorithm integrating GMEC and ILP was verified.

Online publication date: Tue, 25-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com