Simulation of microstructure evolution coupled with fabrication parameters for two-phase ceramic tool materials
by Bin Fang; Chonghai Xu; Guangchun Xiao
International Journal of Nanomanufacturing (IJNM), Vol. 14, No. 4, 2018

Abstract: A computer simulation coupled with fabrication parameters for the sintering process of two-phase ceramic tool materials has been developed using a two-dimensional hexagon lattice model mapped from the realistic microstructure. The relationship between fabrication temperature and microstructure evolution, fabrication pressure and microstructure evolution is proposed respectively. The mean grain size of simulated microstructures by Monte Carlo Potts model integrated with fabrication temperature and pressure increases with an increase in fabrication temperature and pressure, which is consistent with the experiment results. The microstructure evolution of ceramic tool materials during fabrication is simulated by the new Monte Carlo Potts model with considering technology parameters.

Online publication date: Wed, 03-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com