Intelligent decision system for responsive crisis management
by Mohammed Talat Khouj; Abdullah Alsubaie; Khaled Alutaibi; Haitham Magdi Ahmed; Sarbjit Sarkaria; José R. Martí
International Journal of Critical Infrastructures (IJCIS), Vol. 14, No. 4, 2018

Abstract: Disaster mitigation of severe catastrophic events depend heavily on effective decisions that are made by officials. The goal of disaster management is to make decisions that properly reallocate and redistribute the scarce resources produced by the available interconnected-critical infrastructures (CI's). This paper investigates the application of Monte Carlo (MC)-based policy estimation in reinforcement learning (RL) to mount up experience from a massive number of simulations. This method, in conjunction with an optimised set of RL parameters, will help the RL agent to explore and exploit those trajectories that lead to an optimum result in a reasonable time. It shows that a learning agent using MC estimation policy, through interactions with an environment of simulated disastrous scenarios (i2Sim-infrastrucuture interdependency simulator) is capable of making informed decisions for complex systems in a timely manner.

Online publication date: Fri, 12-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Critical Infrastructures (IJCIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com