Air compressor fault diagnosis through statistical feature extraction and random forest classifier
by S. Aravinth; V. Sugumaran
Progress in Industrial Ecology, An International Journal (PIE), Vol. 12, No. 1/2, 2018

Abstract: Fault occurrence and machine downtime in work area is one of the major concerns in many industries which lead to severe economic losses and causalities. The main causes behind these problems is nothing but in-avoidance of regular checking and periodical inspection of working environment. Here is one of the similar cases, where failures in compressor system lead to several losses in industrial aspect due to its enormous application. So monitoring and diagnosis of faults in compressor systemic proposed in this study to avoid regular breakdown and idle time of machineries in industrial and domestic applications. Out of several faults in compressor, five major and common faults were taken in this study and vibration parameters for each condition is measured using accelerometer sensor. Further signals were extracted and classified through machine learning approach for the efficient diagnosis and detection of faults in compressor system.

Online publication date: Thu, 25-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Industrial Ecology, An International Journal (PIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com