Energy and exergy analyses of a solar powered multi-effect cooling cycle
by Abdul Khaliq; Esmail M.A. Mokheimer; Rajesh Kumar
International Journal of Exergy (IJEX), Vol. 27, No. 4, 2018

Abstract: This study aims to assess the thermodynamic performance of a novel solar powered multi-effect cooling cycle through the cascaded utilisation of energy and exergy. The effects of parameters such as: direct normal irradiation (DNI), turbine inlet temperature, turbine back pressure, and evaporator temperature of ERC were ascertained on the energetic and exergetic performance of the cycle. Exergy destruction occurs throughout the plant components is quantified and illustrated using an exergy flow diagram, and compared to the corresponding energy flow diagram. The exergy efficiency of the cycle was significantly less than its corresponding energy efficiency. Computational analysis further revealed that the maximum exergy losses of more than 34% occur in the solar field followed by 7.25% and 6.75% in the components of ARC and CRC, respectively. Percentage of these exergy losses indicates the sites where the efforts should be made to improve the real performance of proposed cooling cycle.

Online publication date: Tue, 06-Nov-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com