Experimental study on heat transfer enhancement ability of water-based graphene oxide nanofluid
by Hao Su; Xin-Yi Yu; Minzhong Gao; Yi-Ran Mo; Yi Zhang; Fei Xing; Aicheng Li
International Journal of Theoretical and Applied Multiscale Mechanics (IJTAMM), Vol. 3, No. 2, 2018

Abstract: Thermal properties of water-based nanofluid with different mass fraction of the graphene oxide nanosheets, and convective heat transfer capability in the microchannel heat exchangers at different temperature conditions are studied experimentally. Experimental results show that the nanofluid can be stable under 60°C, but it would precipitate after four hours heating at 99°C. The kinematic viscosity decreases with extent of 50%~60% as the temperature of nanofluid increases from 10°C to 45°C and the thermal conductivity arises by 17.54%. The heat transfer experiments show that convective heat transfer capacity of water-based graphene oxide nanofluid is better than water when the wall temperature is below 100°C. When the wall temperature of microchannel heat exchangers is above 100°C, the graphene oxide nanosheets would precipitate which leads to the deterioration of convective heat transfer capacity.

Online publication date: Wed, 28-Nov-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Theoretical and Applied Multiscale Mechanics (IJTAMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com