Chaotic inertia weight and constriction factor-based PSO algorithm for BLDC motor drive control
by Manoj Kumar Merugumalla; Prema Kumar Navuri
International Journal of Process Systems Engineering (IJPSE), Vol. 5, No. 1, 2019

Abstract: The population algorithms have a number of advantages over classical methods for solving complex optimisation problems such as tuning of controller parameters of motor drives These algorithms for solving various problems of global optimisation is often called as methods inspired by nature, methods in this class are based on the modelling of intelligent behaviour of organised members of the population. Particle swarm optimisation (PSO) algorithm is population-based algorithm which has ability to fine tune the controller parameters. In this paper, chaotic inertia weight and constriction factor-based PSO algorithms are proposed for tuning of proportional-integral-derivative (PID) controller parameters to control brushless direct current (BLDC) motor drive. The BLDC is modelled in MATLAB/Simulink and trapezoidal back emf waveforms are modelled as a function of rotor position using MATLAB code. The simulation results of PSO algorithms are compared and results shown the effectiveness of C-inertia weight and C-factor in tuning PID controller parameters.

Online publication date: Fri, 07-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Process Systems Engineering (IJPSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com