OLAP technology and machine learning as the tools for validation of the numerical models of convective clouds
by Elena N. Stankova; Andrey V. Balakshiy; Dmitry A. Petrov; Vladimir V. Korkhov; Andrey V. Shorov
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 14, No. 1/2, 2019

Abstract: In the present work we use the technologies of machine learning and OLAP for more accurate forecasting of such phenomena as a thunderstorm, hail, heavy rain, using the numerical model of convective cloud. Three methods of machine learning: support vector machine, logistic regression and ridge regression are used for making the decision on whether or not a dangerous convective phenomenon occurs at present atmospheric conditions. The OLAP technology is used for development of the concept of multidimensional data base intended for distinguishing the types of the phenomena (thunderstorm, heavy rainfall and light rain). Previously developed complex information system is used for collecting the data about the state of the atmosphere and about the place and at the time when dangerous convective phenomena are recorded.

Online publication date: Tue, 11-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com