Attitude tracking control of rigid spacecraft with disturbance compensation
by Zhongtian Chen; Qiang Chen; Meiling Tao; Xiongxiong He
International Journal of Modelling, Identification and Control (IJMIC), Vol. 31, No. 1, 2019

Abstract: In this paper, a fast power reaching law based sliding mode control with disturbance observer is presented to solve attitude tracking control problem for rigid spacecraft with the existence of inertia uncertainty and external disturbance. A disturbance observer is presented to estimate the lumped disturbance with bounded change rate. Then, a sliding mode controller is designed based on the fast power reaching law with considering disturbance estimation to ensure the convergence of the attitude and angular velocity tracking errors. Lyapunov theorem is given to verify the stability of the closed-loop system. The effectiveness and feasibility of the proposed scheme are illustrated by the simulation results.

Online publication date: Tue, 11-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com