Gender classification based on similarity features through SURF and SVM
by D.K. Kishore Galla; Babu Reddy Mukamalla
International Journal of Knowledge Engineering and Data Mining (IJKEDM), Vol. 6, No. 1, 2019

Abstract: The recognisable proof of people in view of their biometric body parts, for example, face, fingerprint, walk, iris, and voice, assumes an imperative part in electronic applications and has turned into a prominent territory of research in image pre-processing. It is likewise a standout amongst the best utilisations of computer-human interaction and understanding. Out of all the previously mentioned body parts, the face is one of most well known qualities in view of its extraordinary feature. In reality, people can process a face in an assortment of approaches to characterise it by its personality, alongside various different attributes. In this paper, we proposed a new algorithm to extract the facial features using SURF algorithm, features are invariant to extract affine transformations are extracted from each face using speeded up robust features (SURF) method (Morteza and Yousefi, 2011) and shows best accuracy on real-time face images compared with different licence datasets like ORL database and FGNet database and with different training ratios by using SVM algorithm (Rahman et al., 2013; Moghaddam and Yang; 2000; Swaminathan, 2000).

Online publication date: Tue, 15-Jan-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Data Mining (IJKEDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com