Experimental investigation and optimisation of ultrasonic machining parameters on zirconia composite Online publication date: Fri, 01-Mar-2019
by Jarjis Hasan Biswas; Jagadish; Amitava Ray
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 21, No. 1/2, 2019
Abstract: This paper presents an experimental investigation to study the influence of ultrasonic machining (USM) parameters (such as slurry concentration, power and feed rate) on material removal rate, taper angle and over-cut during the machining of zirconia (ZrO2) composite. The experiments are conducted on the basis of Taguchi (L9) orthogonal array and multi-objective optimisation on basis of ratio analysis (MOORA) is applied for optimisation of USM process parameters. Parametric analysis is also carried out to study the effect of each process parameters on the responses. Moreover, surface quality of the machined surface is analysed using optimal microscope images. In addition, empirical models are developed for optimum prediction of responses using regression analysis. Finally, confirmatory tests are performed to verify results with experimental results. The result shows that, the material removal rate is influenced by feed rate, and the taper angle and over-cut are influenced by slurry concentration. Also, optimisation method provides optimum parameter setting for USM process that satisfies the real need for machining of ZrO2 composite in practice.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com