Evaluation of Clark IUH in rainfall-runoff modelling (case study: Amameh Basin) Online publication date: Tue, 05-Mar-2019
by Khalil Ghorbani; Meysam Salarijazi; Mohammad Abdolhosseini; Saeid Eslamian; Iman Ahmadianfar
International Journal of Hydrology Science and Technology (IJHST), Vol. 9, No. 2, 2019
Abstract: The application of Clark IUH in Amameh Basin, Iran is investigated in this study. Six recorded rainfall-runoff events were selected. Calibration results showed great changes in the calibrated parameters, percentage error in peaks and volumes (PEP and PEV), and the model efficiency (EFF) while percentage error in time to peak (PTEP) had always low values. Furthermore, the simulations of falling limbs of runoff hydrographs were better than rising limbs. Validation results indicated that time to peaks, runoff volumes, and falling limbs of runoff hydrographs were much better predicted than peak discharges, rising limbs, and total shapes of runoff hydrograph. One way sensitivity analysis revealed that the storage coefficient was more sensitive than time of concentration and EFF, PEP, PETP, and PEV had highest to lowest sensitivity. It can be concluded that the estimation of time to peak and runoff volume had higher performance than runoff hydrograph shape and peak discharge.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydrology Science and Technology (IJHST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com