Spatial-temporal variability of PM2.5 concentration in Xuzhou based on satellite remote sensing and meteorological data Online publication date: Mon, 11-Mar-2019
by Xi Kan; Linglong Zhu; Yonghong Zhang; Yuan Yuan
International Journal of Sensor Networks (IJSNET), Vol. 29, No. 3, 2019
Abstract: Accurate estimation of the spatiotemporally continuous distribution of PM2.5 concentration is of great significance for the research on atmospheric pollution. The effect of aerosol characteristics such as aerosol types was seldom considered in PM2.5 estimation in previous studies. In this manuscript, authors applied an aerosol classification-based method to generate ground-level PM2.5 concentration datasets in Xuzhou from 2014 to 2017. The coefficient of determination (R2) of aerosol classification-based model increases from 0.57 to 0.61 verified by ground station measurements, comparing to the empirical model. The results of spatiotemporal analysis show that the PM2.5 concentration has a slowly decreased trend in last three years, despite has an extreme high value in the winter of 2016 due to the heavy haze pollution occurred in Xuzhou. With regard to the spatial distribution of estimated PM2.5 over Xuzhou, there is a high-PM2.5 area anchoring over the urban district, while low concentration occurs in county town.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com