Hybrid cuckoo search algorithm with covariance matrix adaption evolution strategy for global optimisation problem
by Xin Zhang; Xiang-tao Li; Ming-hao Yin
International Journal of Bio-Inspired Computation (IJBIC), Vol. 13, No. 2, 2019

Abstract: Cuckoo search (CS) is an efficient bio-inspired algorithm and has been studied on global optimisation problems extensively. It is expert in solving complicated functions but converges slowly. Another optimisation algorithm, covariance matrix adaption evolution strategy (CMA_ES) can speed up the convergence rate via the self-adaptative mutation distribution and the cumulative evolution path, whereas it performs badly in complex functions. Therefore, in this paper, we devise a hybridisation of CS and CMA_ES and name it CS_CMA, to improve performance for the different optimisation problems. An evolved population is initialised at the beginning of iteration, using the information of previous evolution. Self-adaptive parameter adjustments are employed through the successful parameter values. To validate the performance of CS_CMA, comparative experiments are conducted based on seven high-dimensional benchmark functions provided for CEC 2008 and an engineering optimisation problem chosen from CEC' 2011, and computational results demonstrate that CS_CMA outperforms other competitor algorithms.

Online publication date: Tue, 19-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com